ccs-f3x4 Issue 1 20 March 2004

Ferranti Pegasus, Perseus and Sirius Computers

Software

All three machines were designed before 1960, when high-level languages had
not yet emerged, and programs were prepared in machine code or simple
assembler languages and typically debugged by the programmer hands-on to the
machine. Although the machines were designed by different teams in different
locations, and were very different in applications, they had one common
characteristic - the instruction sets were powerful and elegant, and were easy
and intuitive to remember. The instruction sets were different for each machine
and so machine code programs were not portable from one machine to another.
However, Pegasus Autocode was available for both Pegasus and Sirius
permitting a program to be written for both machines.

The regularity and "no awkward exceptions" nature of the instruction sets allowed
simple assembler programs to be used. These were not true symbolic
assemblers, as reference to store addresses was always numeric, albeit the store
references could often be relative to some implied or explicit local or global
variable. Functions were specified by their number, not by mnemonics. Numbers
in programs were expressed in either decimal or in octal, depending on the
context. For example, functions in Pegasus and in Perseus were conventionally
written in octal whereas in Sirius they were written in decimal.

Pegasus

The built-in Initial Orders (I0s) in Pegasus were stored on a reserved and write-
protected part of the magnetic drum. The I0s were entered by operation of the
Start switch on the control desk. They then examined the control desk hand-
switches to see whether any directive had been set there by the operator,
otherwise they read paper tape from the first tape reader, looking for acceptable
directives. One such directive was that the 10s should read the remainder of the
tape as a program to be assembled and loaded into the machine for subsequent
execution. The I0s provided many facilities for monitoring and debugging
programs, for accounting for machine usage, for amending programs and for
producing binary versions of programs ("Object Code" in modern parlance) for
subsequent fast input and production use. The use of the IOs and how to write
programs for Pegasus is described in meticulous detail and precision in the
famous Pegasus Programming Manual written by George Felton. At the time this
became something of a benchmark in the industry for a good programming
manual.

Supplementing the 10s internal to Pegasus was a comprehensive collection of
Library Programs, which could either be used freestanding, or else assembled
into a user's program. The libraries were held in binary form on reels of paper
tape, typically mounted on the second tape reader. If a user program called for a
library routine, then this was copied by the I0s as the user program was being
assembled. Library programs covered both scientific and commercial
calculations, ranging from powerful facilities for formatting data for printing, to
equation solvers and PAYE calculations. One widely used library was the Matrix
Interpretive Scheme, used heavily in the aircraft industry.

A number of standard application programs were available for such applications
as engineering frame-stressing calculations, pipe-stressing, operational research,
critical path analysis, survey analysis and data analysis, production control, stock
control and payroll. Moreover each Pegasus installation would build up its own
software suites on a very diverse range of tasks, and such software was often
shared.

Pegasus Autocode was a primitive high-level language which was interpreted by
the Autocode library. Use of the language allowed rapid programming of
applications by persons unfamiliar with the details of the design of Pegasus. An
example of an Autocode program to calculate the root mean square (RMS) value
of the variables v1 to v100 follows, with an annotation (which is not punched on
the program tape) after each instruction:

ni=1 set integer 1 to value 1
v101=0 set (floating point) variable 101 to value zero
2) v102 =vnl xvnl set v102 to the product of variables indexed by nl
v101 =v101 +v102 accumulate total
nl=nl+1 increment index
®2,1003 n1 jump to label 2 if n1 is less than 100

v101 =v101/100 divide total by number of entries
v101 = SQRTv101 call built-in square root function

Perseus

The built-in Initial Orders (I0s) in Perseus were stored on a reserved and write-
protected part of the magnetic tape on mechanism 0. The 10s were entered by
operation of the Start switch on the control desk. They then examined the control
desk hand-switches to see whether any directive had been set there by the
operator, otherwise they read paper tape from the first tape reader, looking for
acceptable directives. One such directive was that the 10s should read the
remainder of the tape as a program to be assembled and loaded into the
machine for subsequent execution. The 10s provided many facilities for
monitoring and debugging programs, for accounting for machine usage, for
amending programs and for producing binary versions of programs ("Object
Code" in modern parlance) for subsequent fast input and production use. The use
of the 10s and how to write programs for Perseus is described in detail in the
Perseus Programming Manual written by Peter Hunt.

A set of library routines was available for Perseus, created by Ferranti
programmers and the two customers' programmers. Since both machines were
used in Live Insurance offices, the routines included standard magnetic tape
operations, check-pointing and restarts, sorting, card translation, formatting for
printing on the Samastronic printer and so on.

Sirius

The Initial Orders (10s) in Sirius were fed iton and stored in the first 200 words of
the store, where they could be optionally write-protected. The I0s were entered
by operation Clear Control button on the control panel. They then read paper
tape from the first tape reader, looking for acceptable directives. One such

directive was that the 10s should read the remainder of the tape as a program to
be assembled and loaded into the machine for subsequent execution. The 10s
also provided facilities for monitoring and debugging programs. The use of the
IOs and how to write programs for Sirius is described in detail in the Sirius
Programming Manual.

Sirius was also supplied with a comprehensive collection of Library Programs
similar to those supplied with Pegasus. Library programs covered both scientific
and commercial calculations, ranging from powerful facilities for formatting data
for printing, to equation solvers and PAYE calculations. The Matrix Interpretive
Scheme was also provided. Pegasus Autocode was also available.

Existing Machines

Two Pegasus machines are known to exist. Machine serial number 25 has been
restored to working order by the Compuer Conservation Society and is in the
Computing Gallery of the Science Museum in London. Demonstrations are given
of the machine working approximately every two weeks.

Pegasus number 6 is in the Museum of Science and Industry in Manchester. It is
not complete and is not in working order, but has been conserved to prevent
deterioration.

The only two Perseus systems were scrapped, and no relics are known to have
survived.

Several Sirius systems still exist. One is believed to be in storage of the London
Science Museum, and was probably owned by the Admiralty. No attempt has yet
been made to restore thiat machine.

There are two Sirius machines in Melbourne, Australia. It is believed that there is
an intention to restore one of them by local enthuiasts.

Simulators

A realsitic simulator of Pegasus is available for downloading from the Computer
Conservation Society ftp archive. The simulator runs on a personal computer and
presents a view on the screen similar to that when sitting at a real Pegasus. The
simulator has all the library programs and many demonstration programs,
together with a tutorial and facilities for "punching” and editing virtual paper tape.

No simulator is known for Perseus.

A simulator for Sirius exists and it is hoped will be released soon.

