
Issue 2 November 2004 

Ferranti Mercury. 
X4 Software and sample programmes (Ferranti preferred spelling). 
 
Index 
Software technical details 
 Programme libraries 
 Application packages 
 Operating instructions 
 Languages 
Programming 
 Machine code 
 Autocode 
Examples of machine code programming 
 Reciprocal library routine 
 To input an autocode library tape 
 To input an autocode tape 
 Autocode examples 
List of quickies 
Simulator 
References 
 
 



Issue 2 November 2004 

D5. Software Technical Details. 
 
Programme Libraries. 
 
 Mercury had a comprehensive set of library routines1 held on sectors 0 to 63 of the 
main store (drum). Those on sectors 0 and 1 were regarded as important enough to be read 
only. Some subroutines (including sqrt, cos, log, tan, radius, sin, exp, arctan) were called 
quickies and had code called from the drum and held in computational store. This reduced 
operation time from 23 mS to 6 mS. Notionally there are 1000 library routines including I/O 
routines, printing numbers, reciprocal, reciprocal square root etc. They were grouped as 
follows. 
 
0 - 49   Output of numbers. 
 50 - 99  Non-numerical output. 
100 - 149   Input of numbers. 
 150 - 199 Non-numerical input. 
200 - 219  Roots, powers. 
 220 - 239 Exp, log etc. 
 240 - 259 Hyperbolic functions and inverses. 
 260 - 279 Other functions of one variable. 
 280 - 299 Other functions of more than one variable. 
300 - 319  Quadrature. 
 320 - 339 Interpolation and curve fitting. 
 340 - 359 Inverse interpolation; zeros of polynomials 
 360 - 379 Power series. 
400 - 419  Ordinary first order differential equations. 
 420 - 439 Ordinary differential equations, not first order. 
 440 - 459 Other ordinary differential equations. 
 460 - 479 Partial differential equations. 
500 - 509  General purpose linear algebra. 
 510 - 529 Linear equations. 
 530 - 549 Eigenvalues and vectors. 
 550 - 579 Other special purpose matrix operations 
 580 - 599 Linear programming. 
600 - 629  General purpose aids to coding. 
 630 - 649 Complex numbers. 
 650 - 679 Multiple precision. 
 680- 699 Subroutines for programmed arithmetic routines. 
850 - 899  Test routines. 
900 - 999  Miscellaneous - Checking, organisation, non-numerical.. 
 
As examples, logarithm or exponential took 5 mS to execute. 



Issue 2 November 2004 

Applications Packages. 
 
 In addition to the above, Ferranti held a library of programmes written by their 
customers and made available for others users2. The reference contains a brief description of 
237 programs under 11 headings. By far the greater number (105) are in the Mathematics 
section. Other sections include:- 
 
Aircraft Industry (2)  Atomic Physics (4) Commercial and DP (3) 
General Engineering (3) I/O conversion (25) Nuclear Engineering (29) 
Operational Research (10) Organisation and checking of programmes (22) 
Statistical (28)   Special subjects (6) 
 
The solution of 112 simultaneous equations is quoted as taking 16 minutes. 
 
“Operating System”. 
 
 Mercury had no operating system as such. Programmes were punched on paper tape 
and entered by the use of hand switches as detailed below. In Manchester a ‘bootstrap’ was 
written to reduce the use of hand switches, described by its author as ‘a dreadful hack’. The 
Oxford machine (and others?) had some sort of operating system known as PIG (details 
please). 
 
Operating Instructions. 
 
Complete control:- 
 
WRITE CURRENT switch to ON 
Inhibit stop key is OFF unless STOP is required in the programme 
Set bottom row of hand switches as required by input routine 
Insert tape into tape reader 
Press clear tape button 
Set Auto/Manual and Single/Continuous to required mode 
Press initial transfer 
 
Modes:- 
Auto, Single  Only 1 instruction 

Pressing the prepulse button reads the next instruction (i.e. single step the programme). 
Auto, Continuous Operate normally. 
Manual, Single Instruction on the top row of keys run once. 
Manual, Continuous Instruction on top row of keys run repeatedly. 
 
Languages. 
 
 There was an assembler language which enabled programmes to be written in a more 
readable form. Examples are shown below. 
 
 There was also a Mercury Autocode, developed from an earlier Mark I Autocode. 
Later it was developed to become Atlas Autocode and Algol in its various versions. 
Examples below. 



Issue 2 November 2004 

Programming. 
 
Machine code3. 
 
Fixed Point: -1 ≤ x 1 with the point after the first digit. The ‘sign’ is added to the fraction 
(2’s complement). 
Floating Point:  x2y; x is the argument; y the exponent. x is in standard form in the range 
½ to 1. -256 ≤ y < 256 with the two most significant bits the same (for overflow detection). 
Zero is expressed as 0.2-256. The half words are H0, the exponent, and H1 - H3, H3 being the 
most significant. 
 
Words are expressed as (e.g.) L28 = M28, M29 = H28, H28+, H29, H29+ 
 
There are a notional 100 functions (instructions), 00 to 99 - see function code in X3. 
 
Floating point arithmetic is rounded by making the least significant bit of the argument 1, 
which is biased. Functions are provided to permit unrounded arithmetic - useful for 
multilength etc. (Note:- The modern floating point standard requires that in the default case 1 
be added to a bit one less significant than the least significant of the argument sometimes. 
The standard has a total of four rounding modes). 
 
Drum transfers - see example below. They take 128 B-instructions → 7¾ mS. There is a 
further 960 µS between sectors allowing two sectors to be read consecutively. 
Switches allow half the drum to be write protected. Sectors 0 - 63 hold library routines (I/O 
etc). Routines on sectors 0 and 1 cannot be overwritten in any normal way. 
 
Some routines called Quickies can be held in the computational store (see list below). 
 
‘Open’ subroutines are held on master tapes and copied to programme tapes as required. 
‘Closed’ subroutines are entered and exited by jumps with the return address being held in 
B1. 
 
Programmes are divided into chapters of up to 15 pages. A subroutine may not cross a 
chapter boundary. 
 
An instruction may refer to a label by means of a v-number - e.g. 181 v1, and also to 
non-labelled instructions,  e.g. 2v4 is register 2 beyond label 4 or -3v4 is register 3 before 
label 4. 
 
Page 0 contains some useful fixed information as follows; 
0 +0  2 -1 Useful constants, held as long numbers (so no 1 or 3) 
 
Four instructions giving access to   Four instructions giving entry to the error print. 
the chapter changing sequence 
4 670 479    9 670 479 
5 690 0    10 690 0 
6 670 478    11 670 5 
7 680 0    12 680 0 
8 597 0 (return) 



Issue 2 November 2004 

In addition there are 25 preset parameters, x1 - x25, which can be set by (e.g.) x10 = 15. 
x10 is 15 until set again. 
 
Directives. 
C Chapter  S Sector   P Page 
T Title   F First sector  R Routine 
Q Quickie  E Enter followed by address of first instruction. 
W Wait   L Line - correct a programme without repunching. 
 
The console has a row of switches that allows manual programming. It also contains six 
lights: signs of B and sac (B7) and the 99 instruction - stop. Two CRTs act as a display which 
can show B-lines 1 to 7, the exponent and argument of the accumulator, Present Function, 
Control register and the argument of the number being read from store to the arithmetic 
system. 
 
Autocode4. 
 
Variables; maximum of 480 main variables in a maximum of 15 groups. v -> 479 are v0  - 
v479. 
15 special variables; a - h, u - z, π. All these except π can have a primed version. i - t are 
indices in the range -512 to 511. 
Numerical: 9 or 10 decimal digits (29 binary digits). 
 
Example: 2mna(m + 1) + amn + man means 2 * m * n * am + 1 + am * n + m * an
 
There are 10 functions of one variable and three functions of two variables, designated by φ, 
e.g. y = φsqrt(any expression). Others include integer part, polynomial, max(x,n,m) (being the 
maximum element of xn - xm) and min(x,n,m). The two variable functions are division (x/y), 
arctan(y/x) and sqrt(x2 + y2). 
 
Repeats: i = p(q)r means from p by q to r. q can be negative. 
 
Large programmes are divided into a maximum of 832 chapters each with its own labelling. 
An ‘across’ instruction enables jumping to/from chapters; e.g. Across 2/3 means jump to 
instruction labelled 2 in chapter 3 (takes 160 mS). 
 
Jumps:  jump 1, x > 0;   jump 2;  1 and 2 are labels. 
 
Read number can take several forms. Printing uses a ? before or after an instruction to 
calculate a quantity. 
 



Issue 2 November 2004 

Chapter 0 is placed at the end of the programme followed by close which starts the 
programme running. 
 
Either ch0     Or ch1 
 f → 180     f → 180 
 n = 4(1)20       1) prog 
 a = 0.25n     up  to repeat 
 prog      close 
 repeat      ch0 
 end      n = 4(1)20 
 close transfers control to n =..  a = 0.25n 
       down 1/1 to label 1) 
       repeat 
       end 
       close  transfer as before 
 
 
This covers basic facilities. Further facilities include:- 
 
Quickies     Rounded/unrounded 
Auxiliary variables (up to 10,752)  Preserve/restore in use of subchapters 
 Complex numbers    Double precision 
Integration of differential equations  Alpha-numeric input 
Pseudo random number generation  Matrix operations 
Programme library 
 
There are some special features on the Manchester and ICI machines only. 
 
Short integers and long numbers can be listed at the head of a chapter with special preceding 
symbols. 
 
Long numbers in fixed point style preceded by + or -. 
 
Generation of a sequence of rectangularly distributed pseudo random numbers. 
Generation of a sequence of normally distributed pseudo random numbers. 
 
An additional three matrix operations. 
 
Additional instructions 78, 90 - 97, 11, 315. Details not listed except for 
11 B' = CA + 1 + n (internal code 003) and 
31 B' = S = n (internal code 103). 
 



Issue 2 November 2004 

Examples of machine code programmes. 
 
1. The reciprocal library routine. A is replaced by its reciprocal. 
June 1956 (before the machine was delivered); MSIM reference F2 series 6 Box 18/5 
supplemented. 
 
The following includes John Gosling’s comments supplemented by Joan Travis and 
combined with those in the Ferranti document. 
 
1. This routine uses a Newton-Raphson iterative process based on the iteration 

yn + 1 = yn (2 - xyn ) 
With  a suitable starting value y0  three iterations were needed. Note that this is one of the 
best algorithms for computation of reciprocal and has been used in many machines (e.g. IBM 
360 model 91). 
 
2. The argument, D, must be in standard (normalised) form, a2p , and the approximate 
reciprocal is y0 = b2q . 
As a c [1/2, 1), then 1/a ∈ b' c (1, 2]. Let a = 1 - z. Then 1/a = 1/(1 - z) which is 
approximately 1 + z. This is greater than 1 and must be shifted down one place and the 
exponent increased to compensate. Thus q = 1 - p. Since z = 1 - a, b' = 2 - a and b is 1 - a/2.  
 
The value of y0 is derived from a straight line approximation to the hyperbola y = 1/D. The 
line is ideally chosen to cut the curve in two places between D = ½ and 1 making the relative 
error between curve and line equal at the two ends of the range and the maximum between 
the two intercepts. This leads to an equation y = -mD + c where neither constant is an integer. 
m is approximately 2, so if it is made equal to 2, mD becomes a simple shift. c is then found 
by making the relative error the same at D = 1 and the maximum value between the two 
intercepts. The value of y0 is 4(sqrt(3) - 1) - 2D = 2.9282 - 2D. Shifted down one place this 
becomes 1.4641 - D. If the integer 750 is represented in 10 bits and then interpreted as a 
number with one integer bit, the number ‘750’ is 1.46484375, which is the nearest to 1.4641 
in 10 bits (line 4 below). 
 
If a is negative, the required value of y0 can be obtained by subtracting 2.9282 from the value 
otherwise obtained (line7). 
 
The expression is chosen to ensure y0 is sufficiently close to 1/x to enable three iterations to 
suffice. The exact y0  is not critical and b is found to 10 digits only. The number of accurate 
bits doubles in each iteration. This approximation is accurate to only about 4 bits. 
 
3. The last iteration is different to reduce round off error. xy2  < 1 so the exponent = 0. If 
(2 - xy2 ) is formed directly it has exponent of 1 and one bit of xy2  is lost before the 
multiplication. 1 - xy2  is very small and is corrected after the final multiplication. 
 



Issue 2 November 2004 

0 410 32 L32= A;  Store x in L32; four half words, M32, M33 
1 300 1 sac = 1 
2 230 32 sac = sac - p;  q = 1 - p; sac is 10 digits so this reads only the 
      most significant half word of 32. 
3 210 34 L34 = q  Again, the most significant half word. 
4 300 750 sac = 750  Interpreted as 1.46484375. 
5 230 33+ sac = sac - 33+ MS 10 digits of argument mantissa subtracted. 
6 490 8x if A ≥ 0 control to 8 
7 330 476 sac = sac - 476  subtract 2.9282 if a is negative. 
8 210 35+ sac to MS 10 digits of long word at 34; 
    This is the most significant 10 bits of b, the rest being zero. 
9 107 -1 set count 
10 510 34 A = -A x L34  -xy0 
11 430 20x A = A - (-2)  2 - xn;  20x is the 20th location beyond the 
  beginning of the programme and must contain -2. This is more accurate than 
  adding +2, since +2 = 1.22, whereas -2 = -1.21 and xy0 is close to 1, so in 
  floating point there is less rounding error. 
12 500 34 A x L34  y1 = y0(2 - xy0) y2 = y1(2 - xy1) 
13 410 34 L34 = A  y1 to L34  y2 to L34 
14 510 32 A = -AL32  A = -xy1  A = - xy2

15 187 11x If Bt ≠ 0 control = 11; B7 = B7 + 1 ( = 0) Bt = 0; go to 16 
16 430 22x A = A - L22  1 - xy2; 22x must contain -1. See note 3 
17 500 34 AL34   y2(1 - xy2) 
18 420 34 A = A + L34  y2 + y2(1 - xy2) = y2(2 - xy2) 
19 590 24x control = 24  stop (beyond the end of the programme  
20 =1, =0     20x = -2 
21 =0, =512 
22 =0, =0     22x = -1 
23 =0, =512 
24      see 19. 
 
 
2. Write the contents of pages 4 - 8 into sectors 115 - 119 of the main store (drum) and 
replace the contents of pages 4 - 8 by the contents of sectors 120 - 124. 
Programming Manual list CS 158 July 1957; MSIM reference F2 Series 6 Box 18/12. 
 
3.56 107 -4 B7 = -4  set count in B7
3.57 677 119 sector register T = 119 modified by -4 = 115 (first time) 
3.58 697 8 Sector 8 + B7  = 4 (first time) to sector T 
3.59 187 3.57 B7 ≠ 0 control = 3.57 B7 = B7 + 1 (else continue) 
 
3.60 107 -4 
3.61 677 124 Sector register = 124 - 4 =120 (first time) 
3.62 687 8 Sector T to page 4 (first time) 
3.63 187 3.61 B7 g 0 control = 3.61 B7 = B7 + 1 (else continue) 
 
 



Issue 2 November 2004 

To input an Autocode library tape. 
 
On main tape put title 
Programme n 
 
All block isolation switches DOWN 
Tape in the reader 
Key 2 of the bottom row of hand switches UP 
ITB    What does this mean? 
Switch on continuous 
 Tape reads - continuous hoot 
Switch off to single 
Isolate switches 0 - 3 on Drum 0 
 
To input an Autocode tape. 
 
Reset all stores to standard state to Sectors 0 - 31 and 80 - 127 inclusive, then isolate 
Tape in reader 
Bottom row of hand switches all zero (normal input) 
  Or Key 4 UP if printing using the ? prefix required 
ITB 
Switch on continuous 
 
Programme translated and entered on reading a starting chapter 0. 
 
 
Autocode examples.  List CS270 July 1960; MSIM reference F2 Series 6 Box 4/22 
 
1. Calculate         µ =          td2 (r - q)g             
                 18L (1 + 2.4d)(1 + 5d) 
                        D           3L 
Let h = t; d1 = d;  d2 = D; u1 = r;  u2 = q;  x = L 
 
Numerator a = hd1d1u1g - hd1d1u2g  
(better:- p = u1 - u2; a = phd1d1g - JBG) 
Denominator factors:- b = 1 + 2.4d1/d2   c = 3 + 5d1/x 
Denominator:- d = 6xbc 
  µ= a/d 
 
2. Load locations a1 - a100 from tape 
 
i = 1(1)100 
Read(ai) 
Repeat 
 



Issue 2 November 2004 

3. Find the three largest values in a0 - a100
 
i = 0max(a0,1,100)  ai = greatest 
b1 = ai    store ai 
ai = -999999999  make ai very large negative 
j = φmax(a0,1,100)  aj is second greatest 
b2 = aj    store aj 
aj = -999999999 
k = φmax(a0,1,100)  ak is third largest 
ai = b1 
aj = b2    Reset ai, aj 
newline 
print (ai, 3, 6) 
print (aj, 3, 6) 
print (ak, 3, 6) 
 
4. Print the powers of 2. 
Note: 1. Register 0 contains floating point +0 and register 2 holds -1.0. 
2. Quickie 9 punches A fixed point as described below. 
 
T    Title 
PRINT POWERS OF 2 
C1    Chapter 1 
R6    Routine 6 
103 1   B3 = 1; set count, n 
400 v1 (5  A’ = Long number in label 1 = +0 initially, 1 in second pass.. 
450 2   A’ - L unrounded. Reg 2 contains -1; this is, therefore 
     A’ + 1 = 1 first time... 
410 v1   Store A; L’ = n + 1; 1 first time, 2 second.. 
101 *   B1 = address of this instruction 
590 v3   control = v3 (Q9 here; to punch A fixed point) 
=2, =0    parameters for Q9 = print 2 integer and 0 fractional digits 
     preceded by line feed etc 
400 2v1   A’ = L , the second register after v1 = 1 initially, 2 second time 
440 2v1   A’ = A + L; 2 first time, 4 second.. 
410 2v1   store A; 2 first time, 4 second... 
101 *   B1 = address of this instruction 
590 4v3   control = 5th instruction in Q9; prints without line feed etc 
=9, =0    9 integer, 0 fractional digits 
173 26   Bt = B3 - 26; Repeat if B3 not equal to 26 
183 v5   If Control not 0, B3 = B3 + 1; 2 first time 
990 0   stop 
+0 (1   n 
=1, =0, =0, =256  2n; 1 initially 
Q9 (3 
591 3   control = B1 + 3 lines on from where quickie code is entered 
     (101 *) 
EV/6    Enter v routine 6 
 



Issue 2 November 2004 

List of Quickies. 
 
1 A’ = 1/A  A must be standardised; error if |A| < 2 -253

2 A’ = 1/íA  A must be standardised; error if A Ÿ 0 
4 A’ = eA   error if eA > 2256

5 A’ = tan A 
6 A’ = sin A (cos A if entered at 2nd instruction) 
7 A’ = cos A 
*8 Punch sac  integer in range -512 to +511. 
*9 Punch A fixed point enter with 101 * 590 - =m, =n where m,n are number of 
    decimal digits before and after the decimal point. 
*10 Punch A fl pt  enter with S = number of decimal digits. 
*11 Punch Sac +  unsigned integer in range 0 - 1023. 
12 A’ = sqrtA  error if A < 0. 
14 A’ = logeA  error if A Ÿ 0. 
15 A’ = arctan y/x;  y = L32, x = L34 error if 0/0; range 0 - 2. 
16 A’ = arcsin A  error if |A| > 1; range = /2, + /2. 
18 read integer to S integers beginning with +, - or decimal digit, terminating with 
    CR or Sp; FS, LF, ER ignored and also CR and Sp between 
    numbers. 
19 read fixed or  Form sign, int part, point, frac part, comma sign exponent CR 
 floating number to A LF or Sp Sp. FS ER Sp (single) ignored, also CR LF Sp 
    between numbers. 
 
  Each number is preceded by FS CR LF CR and terminated by Sp Sp. 

 
Simulator. 
 
No working simulator known at present 
 
D3. References. 
 
1 Library Index. Ferranti List CS 93 June 1956; MSIM reference F2 Series 6 Box 18/9.
 
2 Programmes Available in the Interchange System. Ferranti List CS 218B 1962; MSIM F2 
Series 6 Box reference 4/16.
 

3 Programming Manual. Ferranti List CS 158 July 1957; MSIM reference F2 Series 6 
Box 18/12. 
 

4 RA Brooker, B Richards, E Berg: Mercury Autocode Manual. Ferranti List CS242A, July 
1961; MSIM reference F2 Series 6 Box 4/21. 
 
5 Internal Function Codes. Ferranti List CS 188A, MSIM reference F2 Series 6 Box 4/11. 
 
Reciprocal Library Routine. MSIM reference F2 Series 6 Box 18/5; June 1956 (before the 
machine was delivered). 
 
Autocode Examples. Ferranti List CS 270 July 1960; MSIM reference F2 Series 6 Box 4/22. 


